Calculation in our website is based on the following formula.
This calculation is a simple calculation that does not include valve data.
■ Non-Choked Flow ($\Delta p<0.5 p_{1}$)

	CV Value	Flow Rate	Differential Pressure (Pressure Loss)
Liquid	$\mathrm{C}_{\mathrm{V}}=11.6 Q \sqrt{\frac{G_{f}}{\Delta p}}$	$Q=\frac{\mathrm{C}_{\mathrm{V}}}{11.6} \sqrt{\frac{\Delta p}{G_{f}}}$	$\Delta p=\left(\frac{11.6 Q}{C_{V}}\right)^{2} \cdot G_{f}$
Gas	$\mathrm{C}_{\mathrm{V}}=\frac{V}{2.78} \sqrt{\frac{G_{g} T_{1}}{\Delta p\left(p_{1}+p_{2}\right)}}$	$V=2.78 C_{V} \sqrt{\frac{\Delta p\left(p_{1}+p_{2}\right)}{G_{g} T_{1}}}$	$\Delta p=p_{1}-\sqrt{p_{1}{ }^{2}-\left(\frac{V}{2.78 \times C_{V}}\right)^{2} \times G_{g} T_{1}}$
Saturation Steam	$\mathrm{C}_{\mathrm{V}}=\frac{7260 W}{\sqrt{\Delta p\left(p_{1}+p_{2}\right)}}$	$W=\frac{C_{V}}{7260} \sqrt{\Delta p\left(p_{1}+p_{2}\right)}$	$\Delta p=p_{1}-\sqrt{p_{1}{ }^{2}-\left(\frac{7260 W}{C_{V}}\right)^{2}}$
Superheated Steam	$\mathrm{C}_{\mathrm{V}}=\frac{7260 W\left(1+0.0013 T_{S H}\right)}{\sqrt{\Delta p\left(p_{1}+p_{2}\right)}}$	$W=\frac{C_{V}}{7260\left(1+0.0013 T_{S H}\right)} \sqrt{\Delta p\left(p_{1}+p_{2}\right)}$	$\Delta p=p_{1}-\sqrt{p_{1}{ }^{2}-\left(\frac{7260 W\left(1+0.0013 T_{S H}\right)}{C_{V}}\right.}$

Choked Flow ($\Delta p \geqq 0.5 p 1$)

	Cv Value	Flow Rate	Differential Pressure (Pressure Loss)
Liquid	Not Applicable	Not Applicable	
Gas	$\mathrm{C}_{\mathrm{V}}=\frac{V}{2.43} \frac{\sqrt{G_{g} T_{1}}}{p_{1}}$	$V=2.43 \mathrm{C}_{\mathrm{V}} \frac{p_{1}}{\sqrt{G_{g} T_{1}}}$	Not Applicable
Saturation Steam	$\mathrm{C}_{\mathrm{V}}=\frac{8340 W}{p_{1}}$	$W=\frac{\mathrm{C}_{\mathrm{V}}}{8340} \cdot p_{1}$	Not Applicable
Superheated Steam	$\mathrm{C}_{\mathrm{V}}=\frac{8340 W\left(1+0.0013 T_{S H}\right)}{p_{1}}$	$W=\frac{\mathrm{C}_{\mathrm{V}}}{8340\left(1+0.0013 T_{S H}\right)} \cdot p_{1}$	Not Applicable

Explanation of Symbols

$C v$	Flow Coefficient (Cv Value)
V	Gas Volume Flow Rate $\left(\mathrm{Nm}^{3} / \mathrm{h}\right)$
p_{1}	Absolute Static Pressure Upstream of Valve (kPa abs) Δp
Differential Pressure between Upstream and Downstream Valve (kPa) $(\Delta p=p 1-p 2)$	
$G g$	Specific Gravity of Gas at Standard Condition compared to Air at Standard Condition
	As air being one (1).
$T 1$	Absolute Temperature Upstream of valve (K)
$T S H$	Degree of Superheat $\left({ }^{\circ} \mathrm{C}\right)$

$Q \quad$ Liquid Volume Flow Rate ($\mathrm{m}^{3} / \mathrm{h}$)
W Mass Flow Rate (t / h)
$p 2$ Absolute Static Pressure Downstream of Valve (kPa abs)
Gf Specific Gravity of Liquid at Operating Temperature compared to Water at Standard Condition As water being one (1).
$T 1$ Absolute Temperature Upstream of valve (K)
T SH Degree of Superheat (${ }^{\circ} \mathrm{C}$)
Even if the differential pressure (differential pressure between upstream and downstream of the valve) is increased, in choked flow condition flow rate does not increase.

Figure 1: Relationship between Differential Pressure and Flow Rate

